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Steady draw-down of a liquid jet under 
surface tension and gravity 

By D. B. BOGY 
Department of Mechanical Engineering, University of California, Berkeley 

(Received 3 July 1979 and in revised form 25 March 1980) 

When a water tap is turned off gradually, a critical point is reached at  which the flow 
changes abruptly from a continuous stream to a series of drops that form at  the tap. 
This problem is studied within the context of a one-dimensional (Cosserat) jet theory. 
The exact inviscid, steady, nonlinear jet equations are solved and steady draw-down 
shapes are obtained for various values of Weber and Bond numbers. A critical Weber 
number is obtained (as a function of Bond number) below which no steady solution is 
found that satisfies the constraints imposed at  the nozzle. The results are compared 
with classical experiments and appear to explain the observed ‘first critical velocity’. 

1. Jntroduction 
The phenomenon to be investigated can be observed with a household water tap. 

At a very low rate of flow a steady laminar stream runs from the tap and its radius is 
seen to decrease with distance from the tap. Of course this ‘steady’ stream is unstable 
and small disturbances grow along its length so that it breaks up into drops 10 or 
15 cni from the tap according t o  Rayleigh’s (1879) theory. If the flow rate is reduced 
graduallyby turning off the faucet slowly, the continuous portionof the streamdecreases 
to maybe 3 or 4 cm and then abruptly disappears altogether so that the stream forms 
drops at  the tap. 

A slightly more controlled but simple experiment illustrates the phenomenon better. 
A wine bottle half filled with water and fitted with a rubber stopper that holds a glass 
capillary tube gives such a stream when turned upside down. As the water drains out 
the pressure inside the bottle gradually decreases, causing a very gradual reduction in 
flow rate. When some critical condition is reached the abrupt cut-off occurs. 

The Rayleigh stability phenomenon is well understood and is not the main topic of 
interest here. Instead we seek to predict the steady draw-down shape and the cut-off 
condition just described. The cut-off condition is important in many industrial 
applications. Some processes such as ink-jet printing depend on having a steady 
stream, the break-up of which can be controlled. Other processes need to have drops 
forming at  the nozzle and the maximum flow rate for which this is possible is of 
interest. 

This problem was studied experimentally by Smith & Moss (1917) and Tyler & 
Richardson (1925). These experiments of jets emanating from nozzles differed from 
those of Savart (1833), where the jets were formed by a hole in the bottom of a tank. 
Figure 10 is reproduced from Smith & Moss and shows the length of the continuous 
portion of the jet as a function of head (or velocity a t  the nozzle) for various diameter 
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nozzles. The fluid is mercury and it is discharging into a solution of HgNO,. It was 
determined by Smith & Moss that a portion of the segments BC of all the curves would 
coincide and form a straight line, which if extended from B would pass through the 
origin, if length/diameter is plotted against V(pd/a)* (where p = density, d = dia- 
meter, a = surface tension). Figure 11, taken from Tyler & Richardson, shows such 
a plot for various liquids discharging into air through various size nozzles. These 
experiments will not be discussed in detail a t  this point. Suffice it to say here it was 
determined that the maximum, designated as the ‘second critical point ’, occurs at the 
onset of turbulence, and the part of the curve beyond the maximum is controlled 
primarily by viscosity. I n  the straight portion surface tension was found to  dominate, 
and the kink at  the low end, designated as the ‘first critical point,’, was not explained. 

Other experiments have been reported but most have been concerned primarily 
with high-velocity jets and viscous effects. Scriven & Pigford (1959) measured the 
draw-down shapes of a jet for two values of the Weber number. They also assumed an 
exit profile and used mass and momentum balance in conjunction with boundary- 
layer theory and the free-fall equation to derive c?. simple approximate expression for 
the draw-down shape. Middleman & GaTTis (1961) studied experimentally the con- 
traction of jets, neglecting gravity. They recorded the ratio of final diameter to initial 
diameter and found that for high viscosity the Newtonian jets actually expand rather 
than contract. They used integral methods to derive a relation for the dependence of 
the final diameter on the Reynolds and Weber number. Their relation reduces to the 
high-velocity, low-viscosity result, i 43 ,  of Harmon (1955) in those limits. 

Duda & Vrentas (1967) presented an analysis of the draw-down problem in which 
they used a non-orthogonal co-ordinate system with one co-ordinate surface co- 
inciding with the jet surface. The equations of motion in that co-ordinate system were 
solved by finite differences for the shape of the jet. Lienhard (1968) considered the 
ste2dy draw-down problem by methods similar to those used by Scriven & Pigford. 
He obtained some draw-down shapes bnt they were restricted to high Weber numbers. 
Goren & Wronski (1966) studied the shape of low-speed capillary jets with grai-ity 
neglected by two theoretical approaches. One was a perturbation analysis about the 
final state and the other was a boundary-layer analysis near the point of jet formation. 
They were concerned primarily with viscous effects, much along the same lines as 
Middleman & Gavis. Finally Scheele & Meister (1968) considered the injection of one 
Newtonian liquid into a second stationary immiscible liquid. Using simple force 
balance arguments they derived an expression for the critical velocity for jet forma- 
tion. They compared their result with several experiments and obtained acceptable 
agreement in most cases. 

The approach here is entirely different from those in the investigations just cited. 
A one-dimensional theory is used, the derivation of which rests on a fluid line with 
directors (called a Cosserat continuum). The development of the general theory can 
be found in Green, Naghdi & Wenner (1974), and the specialization to  a straight 
circular jet is given in Green (1976). The theory has been applied to  several jet 
problems with considerable success. See, for example, Bogy (1978,1979a, b ) ,  where the 
spatial stability and drop formation of circular jets emanating from a nozzle are 
studied. Also see Caulk & Naghdi (19790, b )  who deal with the stability and effects of 
rotation of elliptical viscous jets. Finally, Naghdi (1979) has presented such a theory 
for Newtonian and non-Newtonian jets and he used i t  to represent Poiseuille flow in a 
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pipe. A discussion of the derivation of the Cosserat jet theory is beyond the scope of 
this paper. Readers who are unfamiliar with this approach can find the complete 
theoretical development as well as applications to particular problems in the literature 
just cited. 

I n  S; 2 the inviscid form of the equations are recorded in dimensionless form and the 
problem is formulated. Then a constraint on the conditions at  the nozzle is derived 
from a first integral. 

I n  $ 3  a single nonlinear ordinary differential equation is obtained for the jet radius. 
This equation is integrated once and cast in terms of arc length variables on the jet 
surface. I n  $4 a scheme is developed for integrating this equation to obtain the draw- 
down shape. I n  $ 5  the equations are linearized and a closed-form solution is derived. 
The results are compared with those of the nonlinear theory. 

I n  § 6  the results are compared with the classical experiments of Smith & Moss 
(1917) and Tyler 8: Richardson ( I  925), and a discussion is given in 3 7. 

2. Straight circular jet equations and problem formulation 
The Cosserat jet equations for a straight circular jet centred on the z axis which 

points vertically downward were given in Green (1976). I n  dimensionless form the 
inviscid equations (equations (6.9)-(6.14) of Green, with 7 = 1 and R = co) appear as 

($")t+ (w$2) ,  = 0, v,+ 2u = 0, (2.1, 2.2) 

B = P-Ppo$2> n3 = -4-P0427 (2.5) 

where $ ( z ,  t ) ,  w ( x ,  t )  and u(z, t )  are the dimensionless jet radius, axial velocity and 
director velocity; p is the pressure resultant, p,, the atmospheric pressure and n3 is the 
axial component of stress resultant. The dimensionless numbers W and F are the 
Weber and Froude numbers defined by 

W = pawi/v,  F = w:/ga, (2.6) 

in which p is the fluid density, a is the nozzle radius, w,, is the jet velocity a t  the nozzle, 
u is surface tension, and g is the acceleration of gravity. Subscripts in (1)-(5) denote 
partial differentiation and the quantities have been rendered dimensionless through 
the division of 

x ,  $ by a ;  t by a/vo;  v by v,,; u by wo/a; p ,  q ,  n3 by 7rpvga2; 

Po by Po". (2-7) 

I n  addition to the dimensionless parameters defined in (2 .6) ,  the Bond number, B, 
defined as 

B = W / F  = pa2g/v,  (2.8) 

will occur in the solutions. This parameter is independent of velocity and is determined 
by the fluid, the nozzle radiiis. and gravity. It is positive 01' negative ncrording as the  
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jet is flowing downward ( g  > 0) or upward ( g  < 0), i.e. a fountain. In  comparing the 
equations given here with those in Green (1976) one should note that the latter uses CT 
and T for density and surface tension. 

If equation (2.4) is differentiated the quantity qz can be eliminated from the result 
and equation (2.3). Then with the assumption of steady flow and the use of (2.2) to 
eliminate u, the system (2.1)-(2.4) can be written in terms of v and $ as 

v p  = 1, 

V V ,  - +$$h2(vv2z - & V t )  - ~$2vv22z 

(2.10) 

We seek solutions of (2.9) and (2.10) on the semi-infinite jet region z > 0 which 
satisfy the boundary conditions 

and 

As wil! be seen an additional boundary condition is required at z = 0 in order to  deter- 
mine the solution uniquely. In  principle this condition should be determined by the 
flow inside the nozzle together with certain jump conditions at  the nozzle which are 
derivable from the conservation laws. These conditions would have to take into account 
surface tension on the free jet surface and some assumed interfacial energy condition 
inside the nozzle. Since the theory used here is not sufficiently general to apply to the 
flow inside the nozzle such an approach cannot be pursued. Therefore the additional 
condition needed a t  the nozzle will be based on a specific assumption which will 
provide a constraint that finally uniquely determines the solution obtained. 

In  order to derive the constraint condition a t  z = 0 we return to the steady form of 
(2 .3) .  With use of (2.9), (2.3) can be integrated to  yield 

$ ( O )  = 1, v(0)  = 1, (2.11) 

$+O, &+0, V J C O  as z+co .  (2.12) 

v-c = -q+ - [ @ 
+ j ; $ d b ,  w (I+$”)- 

(2.13) 

where C is a constant of integration. The desired condition is related to the choice of 
C. Evaluating (2.13) as z -+ O+ we obtain 

v+-C = -q++ - (2.14) 

We now choose the constant of integration C by 

c = v+ (2.15) 
so that (2.14) yields 

(2.16) 

Therefore this choice of C amounts to the assumption that the net resultant axial force 
on the jet a.t the nozzle equals the pressure force p0 plus the axial component of the 
surface tension force. This is in agreement with known results, based on the classical 
Laplace equation (see Pitts 1974), in the case of a static pendant drop. (One can easily 
show that the Laplace equation is recovered from (2.9) and (2.10) in the limit of zero 
velocity.) Equation (2.16) also gives the proper result for inviscid flow from a straight 
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pipe nozzle in the high velocity limit where $: = 0 is expected to apply. Indeed, it w.ill 
be shown in the linearized analysisof $ 5  that (2.16) implies Qt = 0 in the high-velocity 
limit. 

Next we evaluate (2.4) as z+O+ to obtain 

(2.17) 

The elimination of q+ between this result and (2.16) yields the following constraint 
which supplies the needed condition at  z = 0 :  

(2.18) 

3. Nonlinear solution 
I n  this section a single equation is obtained for determining the steady draw-down 

radius. Then a change of co-ordinates generates a system of equations that is con- 
venient for numerical integration. Upon use of (2.9) we eliminate v from (2.10); then 
the result can be integrated once to  yield 

where C is the integration constant and is not to be confused with the integration 
constant in (2.15).  I n  order to evaluate G we must evidently know 4, 0, and QXz at  
some value of z. 

It is not possible to integrate (3.1) again so numerical solutions are sought. An 
alternative form of this equation that is more convenient for numerical integration is 
obtained by a change of variables to arc length s in the axial direction along the jet 
surface, and angle 8 as shown in figure 1, and represented by the transformation 

so that 
z, = sin 8, $, = cos 8, (3.2) 

Qs = cot8, ( I + @ ) - +  = sin0, & = -8,/sin38. (3.3) 

I n  terms of these variables (3.1) appears as 

(3.4) 

The integration constant C can be expressed in terms of the initial values 

G,(O) = 8:) S(O) = 8 0 ,  ~ ( 0 )  = 0, $(O) = I ,  (3.5) 
as 

1 
sin 8 0  + & - $ cot2 00. 1 

(3.6) 

If the initial values in (3.5) are known, C can be determined from (3.6).  Then (3.2) and 
(3.4) represent a first-order system of three ordinary differential equations that can be 
integrated as an initial -value problem by standard numerical methods. However the 
initial values 00and 0: are not known n priori for the problem at hand. Since somc of the 
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FIGURE 1. Jet configuration and co-ordinates $ = radius, z = axial co-ordinate, 0 = angle of 
surface, s = arc length along surface in a plane containing jet axis. 

boundary conditions of the problem are set at z - f c o  in (2.12), it cannot be expected 
that both these conditions a t  z = 0 would be known. On the other hand the constraint 
(2.18) can be used to obtain one relation between 8 0  and 8:. If use is made of (2,2), 
(2.9), (3.2) and (3.3) in (2.18) this condition yields 

1 sin 8 O  
W (3.7) 

This condition along with (3.5) and the requirement $ + O ,  8,+0 as s+co, are 
sufficient to determine the solution by numerical integration using a technique of 
interactive computing to be described in the next, section. 

4. Numerical integration of nonlinear equations - inviscid case 
The procedure for integrating numerically the first-order system (3.2) and (3.4) as 

an initial-value problem evolved in the following manner. For prescribed values of 
and F (or equivalently W and B),  appearing in (3.4) a pair of values 80 and 0: were 

chosen as initial guesses. The numerical integration was carried out on a PDP-11/60 
computer with graphical output. It was found that the resulting curve for # us. z 
usually diverged for small values of z .  By keeping 8 0  fixed it was possible to guess 
different values of 0: and systematically improve the results. Figure 2 shows the curves 
for W = 6, B = 0.25, 8 0  = 1*753radians, and for various values of 0:. As is apparent 
from figure 2 the integration is highly sensitive to the chosen value of 0:. The solution 
of the problem at hand has the property that the curvature 0, approaches zero mono- 
tonically (for downward-flowing jets) with s (or z )  and becomes very small after about 
one jet diameter. When this happens equation (3.4) is no longer suitable for numerical 
integration. However, since 8, is monotonic it can be assumed that once 0, becomes 
very small it  will remain very small. This observation led to a simple approximation 
procedure which appears to yield quite suitable results. First the numerical integration 
is carried out for various choices of 0: with all other parameters fixed until a suitable 
value of @: is obtained. 8: is deemed suitable if the value of l0,l resulting from the 
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FIGURE 2. Jet  radius $ versus axial distance z determined by the numerical integration of 
(3.2),  (3.4) for W = 6, B = 0.25, 0’ = 1.753 and various values of 6:. 

corresponding numerical solution eventually becomes less than some chosen value 
E < 1 (usually Suppose that 

1 0 , ( ~ * ) l  €, e p )  = o*, $(s*) = p ,  z(s*)  = z*. (4.1) 

Then since 8,q is monotonic (and negative), 

lO,(s)I < E for s > s*, 

0, = 0, 8 =  13” for s > s* 
and we ca.n set 

(4.2) 

in (3.4).  After evaluating C = C* from (3.4) and (4.1) we obtain the following poly- 
nomial equation for determining 4 for x > z*, 

94 - [sin 8*/1.8(1”-% - c’#)] 43 - (2  - cot2 @*)/4(1”-lz - c*) = 0. (4.3) 

This polynomial was solved numerically using standard library computer programs. 
The resulting solution is shown in figure 3 as the dashed curve for the parameters 
mentioned previously. 

With 18 and B fixed the procedure just described determines a unique value of @, 
and hence a solution, €or a range of values of B”. Figure 4 ( a )  shows (continuous curve) 
the values of 0: as a function of Oo for W = 6 and B = 0.26. The points on this curve 
were determined hy the method which resulted in figure 2 for values of 8 0  up to 2.52. 
For larger values of 80 the procedure did not yield a suitable value of 0:. Also shown in 
figure 4 ( rz)  is the graph (dashed curve) for 0: determined by  (3 .7) .  which resulted from 
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FIGURE 3. Jet  radius d wersus axial distance z determined by the numerical integration of (3.2),  
(3.4) and (4.i)-(4.3) for W = ti, B = 0.25 and three values of 8 0 .  Continuous curve (00 = 1.990) 
represents the solution. 

the constraint a t  z = 0. The two curves intersect in &n < 8 0  < n a t  two points, giving 
two different pairs 8 0 ,  8: for the initial slope and curvature. Both pairs satisfy the 
constraint (3.7) and integrate to a suitable set of values as given in (4.1).  Therefore 
two possible solutions of the problem are determined for W = 6, and B = 0.25. The 
‘small-angle’ solution has 8 0  = 1.990, 8: = - 1.55 and the ‘large-angle’ solution has 
8 0  = 2.490, 8: = - 0.993. Both of these solutions are also shown in figure 3. The small- 
angle solution is plotted with a continuous line while the large-angle solution is a 
dash-dot curve. Experimental observations, t)o be discussed in $6,  tend to support the 
occurrence of the small-angle and not the large-angle solution. The latter is evidently 
unstable. This hypothesis needs to be verified by a stability analysis, which is beyond 
the  scopeof the present, investigation. It is assumed here that the small-angle solution 
is the only physically relevant one. Therefore the three shapes shown in figure 3 
should be viewed as follows: the dashed curve is not a solution because the initial slope 
8 0  and curvature 0: do not satisfy the constraint (3.7); the dashed-dot curve is the 
large-angle solution corresponding to the large-angle intersection in figure 4 ( a ) ,  and 
it is presumed to be unstable and therefore not physically relevant; the continuous 
curve is the small-angle solution corresponding to the small-angle intersection in 
figure 4(a ) ,  and it is presumed to be the solution of interest. 

Figure 4(b)  is similar to figure 4(a) except here W = 4-2 and no intersection occurs. 
As W decreases the two points of intersection in figure 4 ( a )  move closer together until 
a value W,, is reached for which the two points coincide and the two curves are tangent 
a t  one point only. For W > there are no points of intersection of the two curves 
and therefore no steady solution is obtained satisfying the constraint (3.7). This 
occurs at  Er NN 4.38 for B = 0-25. 

Figure 5 shows by dashed lines the curves determined by the constraint (3.7) for 
various values of Vr in 2.5 < W < CO. Also shown there by continuous lines are the 
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FIGURE 4. Initial curvature 19: versus initial angle 00. Continuous curve is determined from trial- 
and-error scheme depicted in figure 2 for various 00. Dashed curve is a plot of conshraint equa- 
tion (3.7). ( a )  Intersection points give initial conditions for possible solution, W = 6. ( b )  W = 4.2. 
There is no intersection. B = 0.25. 
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FIGURE 5. Starting conditions for draw-down solutions as given by locus of smell-angle inter- 
section points from curves shown in figure 4 for various values of W and B (solid lines). Dashed 
lines give plot of constraint equation (3 .7)  for various W .  

loci of the unique small-angle pairs 8 0 ,  8; for various values of B in - 1 < B < 1. All 
the points used for determining these curves were obtained by the intersection method 
illustrated in figure 4 (a ) .  Thus, for each value of W, curves similar to thoseinfigure 4 ( a )  
were obtained and these curves determined one point of intersection which was then 
plotted in figure 5 .  

In  summary, the procedure for obtaining the solution for given W > W,, and 3 is 
as follows: 

(i) Use figure 5 to get the initial values 80,8;. 
(ii) Calculate Cfrom (3.6). 
(iii) Numerically integrate (3.2) and (3.4) with 

c = c, 8,o = g:, go = $0, 20 = 0, $0 = 1 

until (4.1) is satisfied for chosen E.  Some adjustment of the value 6: will be necessary 
since the curves cannot be read with sufficient accuracy to ensure that (4.1) will be 
satisfied. (Recall figure 2.)  

(iv) Calculate C = C* from (3.4) with (4 .2) .  
(v) Solve the polynomial (4.3) for $ when x > x * .  
Figure 6 shows the radius $ as a function of z for several values of the Weber number 

W with the Bond number B = 0.25. The Bond number is fixed by the choice of nozzle 
and fluid, whereas the Weber number varies with initial velocity vo. Therefore the 
sequence shown in figure 6 is for a chosen nozzle and fluid with various initial velocities. 
At high velocity (W = 1000) the profile is almost straight, whereas for low velocity 
( W = 4.5) there is severe draw-down near the nozzle. In  an experiment where the 
nozzle velocity is gradually reduced, B remains fixed while W decreases. According 
to the solution presented here the drawn-down profile passes through a sequence of 
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FIGURE 7. Je t  shapes for B < 0 (fountain problem). 

shapes shown in figure 6 (for B = 0.25) until W reaches Wcr. For W < W,, no steady 
drawn-down solution is obtained. In  $ 6  experiments will be discussed that suggest 
W,, determines the 'cut-off' condition for transition from a steady draw-down to a 
non-steady drip from the nozzle. 

The profiles in figure 6 have the property that the maximum curvature occurs a t  
z = 0 for points on the continuous curves in figure 5 to the left of their maxima. For 
B = 0.25 these points correspond to W > 5-4. If W < 5.4 the maximum curvature is 
not att x = 0 but occurs a short distance downstream from z = 0. Therefore in these 
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FIGURE 8. Cut-off Weber number, W,,, versus Bond number B. Continuous curve is 

from nonlinear theory; dashed curve is for linear theory. 

cases 0, is not monotonic but passes through one extremum and then monotonically 
approaches zero, 

Figure 7 shows profiles for B < 0 ,  i.e. for the fountain problem. Here the curvature 
0, integrates to small values as for B > 0,  but farther down the jet the curvature again 
increases as the jet velocity decreases due to gravity. The procedure for computing 
these profiles is the same as for B > 0. The diverging radius is predicted by the poly- 
nomial in (4.3) and this procedure rests on the assumption that 0, remains small, which 
is questionable here. Nevertheless the results appear to be qualitatively correct and 
are numerically correct for x < 1.5 where the integration scheme was used. 

Finally figure 8 shows the dependence of W,, on B. The continuous curves in figure 5 
for fixed B terminate at  the appropriate value of W,, and for $0 in the range 

2.3 < $0 < 2.4. 

5. Linear analysis 
Assume 

# , ( O )  = -€, -5 < 1, 

and linearize (2.9) and (2.10) by the expansions 

# = l+€#l+ ... , z1= l + s v l +  ... 
and with the added assumption 

2 
- = EGZ = O ( E ) .  
F 

and vl are The resulting linear equations for 

2#,+v, = 0, 

(5.3) 



Stead!/ draw-down of liquid jet  169 

1 5  

10 

01 

5 

0 5 10 1s 20 

W 
FIGURE 9. Linear theory a versus W from (5.9) for inviscid case (dashed curve is for 

imaginary a when W < 4). 

Also the boundary conditions (2.11) become 

A ( 0 )  = V l ( 0 )  = 0, (5 .6 )  

$ l Z ( O )  = -1. (5.7) 

and (5.1) produces the additional condition 

With the use of (5.4) wl can be eliminated in (5.5) and there results after one integration 

L- a"1 = - 4w Gx+C, 
w - 4  

where C is the constant of integration and 

a2= 4(1+2W)/(W-4).  (5.9) 

Observe that ct2 > 0 if W > 4, a2 < 0 if W < 4 and a2 is undefined for W = 4. Figure 9 
shows a vs. W for W > 4 and i5i = la1 vs. W for W < 4. 

Solution fo r  W > 4. The general solution of (5.8) for a2 > 0 is 

(5.10) 

where A and D are arbitrary constants and C' is an integration constant different from 
C. If #1 is to remain bounded for large x we must take D = 0. Then (5.6) with (5.10) 
yields 

(5.11) = Afe-""-l)-- 
WG 

1 + 2 W Z '  
and (5.7) determines A so that 

WG WG 
(5.12) 

In order to use this resultJ with (5.2) and (5.3) to determine the drawn-down jet 
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shape we must first specify the value of E in (5.1), which represents the initial slope of 
the profile. This we obtain from the linearized form of the constraint (3.7). From (3.3) 
and (5.1) there results 

€ = -cot80. (5.13) 
If y < 1 is defined by 

go= *n+y (5.14) 
then 

(5.15) F, = tany 2: y .  

Next, the linearization of (3.7) and (3.3), with (5.1), yields 

Now return to (5.12) to obtain with (5.3) 

(5.16) 

(5.17) 

Finally (5.16), (5.17) and (5.9), (2.8) yield the following expression for s: 

(5.18) 
B 2 

€ = -  
1 + 2 w  + [ ( l +  2 W )  (W- 4 ) p '  

Observe that s < 1 only if W is much greater than 4 and B/ W = F-1 is small. Therefore 
the linear analysis is reliable only for 

W = pav~/cr 9 4 and B/ W = v:/ga 9 1. (5.19) 

We also observe from (5.18) that E + O  in the limit W+co, which, in view of (5.11), 
means that (2.16) implies q5: = 0 in the high-velocity limit as would be expected. The 
values of 8 0  determined by (5.14), (5.15) and (5.18), and 8," determined by (5.16) can 
be compared with the corresponding quantities of the nonlinear analysis plotted in 
figure 5. The values 4/(4 - W) agree with the dashed curves at 8 0  = in and these values 
are seen to be reasonable approximations of 8: for W > 7 when B is also small. The 
two circled dots on figure 5 are the linear theorj pairs of 80,8: for W = 7 and B = 0.25 
and 1.  The thin lines connect these points to the corresponding points of the nonlinear 
analysis. This illustrates that both conditions in (5.19) need to be satisfied in order for 
the linear theory to give a good approximation. 

In summary, the linearized analysis gives q5 = 1 +&, where sis determined in terms 
of B and W from (5.18), is given by (5.12) in which G = (sF)-I and a is given by 
(5.9). The linear analysis is reliable only when (5.19) are satisfied, and then only for a 
range of z such that (5.3) is satisfied. Drawn-down shapes were calculated for B = 0.25 
and various values of W, and the results are plotted as dashed lines in figure 6 along- 
side the corresponding curves obtained from the nonlinear analysis. The comparison 
shows that the linearized theory gives good results for W = 30 for values of z up to 10. 
As W decreases the range of x for good agreement decreases. At W = 10 agreement is 
good for z < 2 and at W = 6 the agreement is good for z < 1.5. The value of E is 0.41 1 
for this case. Surprisingly the result is not as bad as expected for W = 4.5 although 
reasonable agreement occurs only for z < 0.2. In this case the value of s is 0.919. 

The above procedure yields a solution of the type just described for all values of 
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FIGURE 10. Length of continuous portion of jet versus head (velocity at nozzle) for various 
nozzle diameters. Experimental results reproduced from Smith & Moss (1917). 

W > 4. As W + 4  both a and c become unbounded. For W < 4 a is imaginary so the 
solution (5.10) is oscillatory. Then the constant D in (5.10) is not required to be zero by 
a boundedness condition, and so another boundary condition would be required for 
the solution. We therefore conclude that the linear theory predicts We, = 4 as com- 
pared to figure 8 for the nonlinear solution. 

6. Comparison with experiments 
The first extensive experimer: tal observations for the steady draw-down of a liquid 

jet emanating from a nozzle were reported by Smith & Moss (1917). They focused on 
the length of the continuous portion between the nozzle and the point of drop forma- 
tion, and they measured this ‘jet length’ as a function of ‘head’ (or velocity a t  the 
nozzle). Figure 10 (from Smith & Moss) shows their unreduced results for a mercury 
jet discharging into a solution of mercurous nitrate for various size glass nozzles. 
Quoting them: 

Considering the curve ABCDE,  of this figure,. . . it will be seen that between 
A and B, where the heads are a t  first only just sufficient to cause the jet to form, the 
jet-length increases very rapidly, as the head rises. At B the rate of increase of 1 
with h changes suddenly, becoming smaller and remaining practically constant till 
C is reached. Beyond this point the jet-length falls very rapidly a t  first, as the head 
is increased. At the higher head (near E )  the rate of decrease of jet-length is com- 
paratively small. Between C and D the jet is relatively unstable, lengthening and 
shortening in a capricious way which makes definite measurement of its length 
difficult. . . 

Similar results were obtained with other fluids and the points B and C were designated 
as first and second ‘critical points’ of the curve. By i-aryi-ng surface tension and 
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200 

I h 

0 4.0 X.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 

V(pd/cr)S 
FIGURE 11. Dimensionless length of continuous portion of jet uer.sus T’(pd/a)a (I’ = velocity, 
p = densky, d = diameter, a = surface tension) for various nozzle diameters and liquids. 
Experimentd results reproduced from Tyler & Richardson (1925). W ,  water ; MS, methylated 
spirits; PO, paraffic oil; S3, S4, S5a, sugar - the number refers to table 1 ; - - - - , Soap l a ,  
Soap 5”a, soap solutions. The values of d are also shown on the figure. Table 1 contains further 
information concerning the experiments. 

viscosity Smith & Moss determined that region A-C is controlled by surface tension 
while C-E is controlled primarily by viscosity. The second critical point C coincides 
with the onset of turbulence. They also found that the results depend ‘appreciably 
upon the form of the nozzle’. 

A formula describing the length of the jet was derived by Smith & Moss on the basis 
of Rayleigh’s (1870) stability theory. From this relation it was observed that the 
segment between A and B ‘can be accounted for if we assunie . . . the initial amplitude 
of the disturbance decreases a t  first as the velocity 01 efllux rises’. When the experi- 
mental results were plotted as Z/d 2’s. V/(pd/a)B (d = diameter, I’ = velocity, p = 
density, a : surface tension) the segment between B and C was found to be a straight 
line, which if extended would pass through the origin. Furthermore, this line and 
point B were essentially the same €or all the different fluids and nozzles. This is demon- 
strated by figure 11 and table 1 reproduced here from Tyler & Richardson (1925), who 
continued and expanded the experiments of Smith & Koss. Here the first and second 
critical velocities are designated V, and V, respectively. The Weber number IY defined 
in (2.6) is related to V(pd/cr): in figure 11 by 

m = +(T’(pd/CT)3)? 

The values of W associated with the column V, (pd/u)B range from 3-70 to 5.51 if the 
lowest and highest values (which correspond to  the first two results for methylated 
spirit) are excluded. The average of these values is 4.69. The values of B, defined in 
(2.8),  range between 0.01 and 0.03 for the results in figure 11. For B i n  thisrange, the 
critical Weber number below which a steady solution was not obtained is given in 
figure 8 as W,, 2: 4.25. The suggestion is, therefore, that the experimentally observed 
first critical velocity is associated with the W,, derived here. This view is supported 
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by the statement in Tyler & Richardson, p. 309, where it is observed that, in the region 
below the first critical velocity, ‘the continuous portion of the jet is traversed by 
ripples ’. Such observable ripples would mean that the solution is not steady. 

A simple experiment was conducted to check the above hypothesis of unsteady flow 
below the first critical velocity. A 5-gallon bottle was fitted with a rubber stopper in 
which three holes were drilled. One hole held securely a 1.2 mm internal diameter glass 
capillary nozzle. The other two holes carried glass tubes that reached nearly to the 
bottom of the jar on the inside and protruded enough on the outside for flexible hoses 
to be attached. One of these hoses was connected to a U-tube manometer containing 
water, and the other was fitted with a valve for adjusting the rate of air flow into the 
bottle after a partial vacuum was created by the discharge of some of the water. The 
entire bottle assembly was secured in a frame that was hinged on a horizontal axis so 
the bottle could be turned from the nozzle-up to the nozzle-down position. As the 
water discharged the bottle pressure gradually reduced and the length of the jet 
shortened until the first critical point was reached. Below this point the inlet air valve 
had to be carefully adjusted to  keep the continuous portion from disappearing 
altogether. When this was done the ripples mentioned by Tyler & Richardson were 
indeed observed at  times and this observation tends to confirm that the portion of the 
curves below the first critical point is associated with unsteady flow. 

7. Discussion of the solution and its limitations 
The solution obtained here for steady draw-down and cut-off of an inviscid liqiiid 

jet under surface tension and gravity is based on a one-dimensional theory that has 
previously been used to solve other jet problems. The formulation of the problem sets 
some of the conditions far downstream from the nozzle and they cannot all be incor- 
porated into the solution method, which is numerical integration of ordinary differential 
equations as an initial-value problem. Insufficient initial conditions are known a t  the 
nozzle but a constraint between the initial slope and initial curvature is obtained a t  
the nozzle and this determines the solution for the inviscid jet. This constraint is a 
c!irect result of evaluating the integration constant in (2.13) according to (2.15). 
Attempts to prove that C must take this value have not been successful and a different 
choice for G would lead to a different constraint. Because of our interest in the low- 
velocity range the condition valid for zero velocity static pendant drops was studied 
and found to be the same as (2.16). However, the linear analysis in $ 5  indicates that 
this choice also gives the proper condition in the high-velocity limit. 

The solution gives draw-down shapes for prescribed values of W and B as defined in 
(2.6) and (2.8) for values of TI’ > W,,, where W,, is shown as a function of B i n  figure 8. 
For W < Hi. no steady solution is obtained. 

The 1inea;ized equations yield a simple solution which is compared with the non- 
linear solution in fignre 6. The approximation of the linear theory is reasonable for a 
short length of the jet for W > 7 and B N 0. The linear theory predicts W,, = 4 for 
the inviscid jet which is also a good approximation to W,, given in figure 8. This 
correspondence lends credibility to the constraint condition discussed above, since W,, 
in the nonlinear theory is associated with the constraint while W,, in the linearized 
theory results directly from (5.9). 

Experiments were citedwhich indicate that a critical value of Woccursnear W = 4.5. 
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Below this critical value the jet) is not steady in the continuous portion, in agreement 
with the predictions of the solution. Of course the steady solution for W > W,, is also 
not stable and breaks up according to Rayleigh’s theory, but a steady solution exists. 
For W < W,, no steady solution is found and experiments reveal observable ripples 
on the continuous portion of the jet. 

When W = 0 a steady solution exists for low enough nozzle pressure and it is the 
static pendant drop solution. As pressure increases and the volume of the drop 
increases this solution becomes unstable and the drop detaches (see Pitts 1974). As W‘ 
increases from W = 0 the jet first drips at the nozzle, which means that the angle 8O 
of the meniscus at  the nozzle is time dependent and varies between two values 80, and 
O!& say. Then as W increases more the supply is too great for distinct drops to form at  
the nozzle so a continuous length occurs that still has time-dependent 8O. This rela- 
tively large disturbance at the nozzle causes break-off a t  a very short length. This 
prevails until Wreaches Wcr. Then the steady solution exists and the disturbance a t  the 
nozzle is much smaller, accounting for tlie discontinuity in the experimental curves a t  
the ‘first critical point ’. 

Of course, the inviscid solution obtained here cannot account for any effects associ- 
ated with the change in velocity profile that occurs just outside the nozzle. For example, 
the profile could be that of Poiseuille ROW inside the nozzle and it becomes essentially 
uniform a few diameters downstream from the nozzle. For a viscous fluid these effects 
are known to be important, and in some cases they may dominate. See Middleman & 
Gavis (196l), where highly viscous Newtonian jets are found to expand rather than 
contract as they emerge from the nozzle. 

This work was partially supported by the IBM Research Laboratory in San Jose, 
California. The nunierical integration was carried out on the PDP-11/60 mini- 
computer of the Department of Mechanical Engineering, University of California, 
Eerkeley, using the PARASOL program written by Professor D. Anslander. The 
author is indebted to the reviewers for several helpful suggestions. 
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